An FPGA-Based Parallel Accelerator for Matrix Multiplications in the Newton-Raphson Method
نویسندگان
چکیده
Power flow analysis plays an important role in power grid configurations, operating management and contingency analysis. The Newton-Raphson (NR) iterative method is often enlisted for solving power flow analysis problems. However, it involves computation-expensive matrix multiplications (MMs). In this paper we propose an FPGA-based Hierarchical-SIMD (H-SIMD) machine with its codesign of the Hierarchical Instruction Set Architecture (HISA) to speed up MM within each NR iteration. FPGA stands for Field-Programmable Gate Array. HISA is comprised of medium-grain and coarse-grain instructions. The H-SIMD machine also facilitates better mapping of MM onto recent multimilliongate FPGAs. At each level, any HISA instruction is classified to be of either the communication or computation type. The former are executed by a controller while the latter are issued to lower levels in the hierarchy. Additionally, by using a memory switching scheme and the high-level HISA set to partition applications, the host-FPGA communication overheads can be hidden. Our test results show sustained high performance.
منابع مشابه
A New Load-Flow Method in Distribution Networks based on an Approximation Voltage-Dependent Load model in Extensive Presence of Distributed Generation Sources
Power-flow (PF) solution is a basic and powerful tool in power system analysis. Distribution networks (DNs), compared to transmission systems, have many fundamental distinctions that cause the conventional PF to be ineffective on these networks. This paper presents a new fast and efficient PF method which provides all different models of Distributed Generations (DGs) and their operational modes...
متن کاملA Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot
Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...
متن کاملNonlinear inelastic static analysis of plane frames with numerically generated tangent stiffness matrices
For the nonlinear analysis of structures using the well known Newton-Raphson Method, the tangent stiffness matrices of the elements must be constructed in each iteration. Due to the high expense required to find the exact tangent stiffness matrices, researchers have developed novel innovations into the Newton-Raphson method to reduce the cost and time required by the analysis. In this paper, a ...
متن کاملThe Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملحل سینماتیک مستقیم روبات استوارت- گوف با استفاده از روش ترکیبی بهبود یافته (ترکیب شبکه عصبی و نیوتن- رافسون مرتبه 3)
Many efforts have been done in recent years to decrease the required time for analysis of FKP (Forward Kinematics Problem) of parallel robots.This paper starts with developing kinematics of a parallel robot and finishes with a suggested algorithm to solve forward kinematics of robots. In this paper, by combining the artificial neural networks and a 3rd-order numerical algorithm, an improved ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005